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Abstract. A theory of hole magnetic polarons in diluted magnetic semiconductors of zinc-
blende structure is presented, following the method introduced by Baldereschi and Lipari to
solve the neutral acceptor problem. An expression for the nonlinear magnetic potential is
determined in the mean-field approximation. An efficient numerical method is used to solve the
system of two coupled differential equations. Results are presented for quantum dots, neutral
acceptors and free magnetic polarons. The present theory predicts a substantial increase of
the magnetic polaron energy in all cases. An excellent parameter-free fit of acceptor magnetic
polaron energy versus temperature is obtained for diluted systems. Simplified models based on
a single parabolic band with two adjustable parameters, the hole mass and the exchange integral,
are shown to be inadequate, in particular in the case of quantum dots.

1. Introduction

In semimagnetic or diluted magnetic semiconductors (DMSs), one topic which has been
well studied, both experimentally and theoretically, is the magnetic polaron (MP) [1], which
arises from strong sp–d exchange interaction between a band carrier and the magnetic ions.
Strong MPs are related mainly to holes (neutral acceptors or localized excitons), since
p–d exchange is usually about four times stronger than s–d exchange, at least in II–VI
compounds. In zinc-blende material, the degeneracy at the top of the valence band of
08 symmetry makes the theory more complicated. This is why, in MP models, holes are
usually treated as simple parabolic-band particles with3

2 effective spin, characterized by
two parameters,mh the effective mass andβ ′ = ρβ, the exchange parameter [2], whereβ
is the exchange constant for a free hole. The factorρ, smaller than unity, arising from hole
localization, was first calculated for a uniform exchange field in an acceptor [3] and in a
quantum dot (QD) [4].

In this paper, we present a more precise treatment for zinc-blende semiconductors,
based on the spherical model introduced by Baldereschi and Lipari (BL) [5] to solve the
shallow-acceptor problem. In section 2, we derive an expression for the magnetic potential
in the mean-field approximation. The procedure of numerical solution for the two BL
coupled differential equations is described in appendix A. Results for a hole MP in a QD
are presented in section 3. We show that standard calculations give the same result only
at saturation. Away from saturation, the present theory gives a sizeable increase in MP
energy, by a factor that can be of the order of two. We show in appendix B how a new
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4290 C Benoità la Guillaume and A K Bhattacharjee

factorη > 1 has to be substituted forρ in the high-temperature linear regime. In section 4,
results for a neutral acceptor MP are given. Extension to a free MP is also outlined.

2. Theory

In the spherical approximation for the Luttinger Hamiltonian, the hole wavefunctions are

9κ(r) =
∑
ν

Fνκ(r)uν(r) (1)

whereκ and ν run through 3
2, 1

2, − 1
2 and− 3

2. uν(r) are the time reversed valence band
Bloch functions at0. Note that, following BL and Efros [6], we have included the fourfold
08 valence band only in (1). Recently, Richardet al [7] have reported that the contribution
from the spin–orbit split-off band07 might be of crucial importance for the QD hole level
ordering. Here, we consider the fourfold ground state 1S3/2 that corresponds to

Fνκ(r) = δνκR0(r)Y00+ 〈 32, ν; 2, (κ − ν)| 32, κ〉R2(r)Y2,κ−ν(θ, ϕ) (2)

where Clebsch–Gordan coefficients have been used. Let us rewrite the radial functions
R0(r) andR2(r) as

f (r) = (4π)−1/2R0(r) g(r) = (4π)−1/2R2(r) (3)

which satisfy the normalization condition∫ ∞
0

4πr2[|f (r)|2+ |g(r)|2] dr = 1. (4)

As pointed out by BL, the above functional form (2) remains valid in any potential of
spherical symmetry. Unperturbed QD functionsf (r) andg(r) can be written in terms of
spherical Bessel functions [6].

Now, the expectation value of the exchange interaction between the hole and the Mn d
electrons (total ionic spinS = 5

2) is given by [4]

〈Hexc〉κ = −β
3

∑
i,λ,ξ

F ∗λκ(Ri )〈λ|j · Si |ξ〉Fξκ(Ri ) (5)

wherei labels the Mn ion sites andβ is the p–d exchange constant. The effective exchange
field acting on an Mn spin atr is thus

Beff (r) = β

3gµB

∑
λ,ξ

F ∗λκ(r)〈λ|j|ξ〉Fξκ(r). (6)

Note that this exchange field contains an angular dependence even if we neglect its
transverse components. In order to restitute the spherical symmetry of our problem, we
average over the orientationr in (6), so that the effective field along the mean-field axisz
reads

Beff (r) = β

gµB
κ(|f (r)|2+ 1

5|g(r)|2). (7)

The magnetic free energy can be written as

Gmag = −
∫

dr
∫ Beff (r)

0
M(B) dB (8)

whereM(B) is the magnetization of the Mn spin system (assumed to be continuous). The
total free energy of the hole and the magnetization cloud is

G = Gmag + Th + Vext . (9)
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Th andVext are respectively the expectation values of the hole kinetic energy and of the
non-magnetic potential energyV (r) (like the Coulomb potential in the acceptor case).

According to BL for a 1S3/2 state

Th = − h̄2

2m0
γ1

[ ∫
drf ∗(r)

{[
d2

dr2
+ 2

r

d

dr

]
f (r)− µ

[
d2

dr2
+ 5

r

d

dr
+ 3

r2

]
g(r)

}
+
∫

dr g∗(r)
{
−µ

[
d2

dr2
− 1

r

d

dr

]
f (r)+

[
d2

dr2
+ 2

r

d

dr
− 6

r2

]
g(r)

}]
. (10)

Here,m0 is the free electron mass andµ the BL parameter defined as

µ = (4γ2+ 6γ3)/(5γ1)

in terms of the Luttinger parametersγi . Vext is simply〈f (r)|V (r)|f (r)〉+〈g(r)|V (r)|g(r)〉.
The usual variational recipe for minimization reads

(∂/∂f ∗)(G− EN) = 0 (∂/∂g∗)(G− EN) = 0 (11)

whereN andE represent the norm and the Lagrange multiplier respectively. We thus arrive
at a system of two coupled Schrödinger equations:

−h̄
2γ1

2m0

[{
d2

dr2
+ 2

r

d

dr

}
f (r)− µ

{
d2

dr2
+ 5

r

d

dr
+ 3

r2

}
g(r)

]
+{Vmag + V (r)− E}f (r) = 0 (12a)

−h̄
2γ1

2m0

[{
d2

dr2
+ 2

r

d

dr
− 6

r2

}
g(r)− µ

{
d2

dr2
− 1

r

d

dr

}
f (r)

]
+{ 15Vmag + V (r)− E}g(r) = 0 (12b)

where

Vmag(r) = −(βκ/3gµB)M(Beff (r)) (13)

with Beff from (7). For the local magnetization functional, we can use, following [8], the
experimental high-field magnetization curve [9]:

M(H) = gµBN0xeff (
5
2)B5/2(5gµBH/2k(T + T0))+ αlH. (14)

N0 is the density of cation sites,xeff the concentration of ‘free’ magnetic ions,T0 a parameter
taking into account the mean long-range antiferromagnetic interaction between ions andB5/2

the Brillouin function for spin5
2. The linear termαlH , whereαl is an empirical parameter,

partly represents cluster contributions that cannot be described by the modified Brillouin
function. This term is important for small QD where the effective fieldBeff in (7) may
reach several tens of tesla.

Let us note that (12a) and (12b) are just the generalization for the MP case of (27a) of
BL. In [5], the system of differential equations (12a, b) was solved variationally,f (r) and
g(r) being developed as a sum of Gaussian functions. Here, we introduce a new method
of numerical solution of the system (12a, b), which is explained in appendix A. We have
checked the accuracy of this method in two ways: (i) we obtained for the acceptor case
results in very good agreement with those of BL; (ii) in the case of the localization energy
of a hole in a spherical QD with infinite barrier, an analytical solution exists [6],f (r) and
g(r) being combinations of spherical Bessel functions; here again, our numerical solution
is excellent.
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3. A hole MP in a QD

Calculations are performed for a semimagnetic Cd1−xMnxTe QD of radiusR. We consider
a hole MP in order to exhibit more clearly the difference with the simplified model assuming
a simple parabolic hole band. The CdTe material parameters used are listed in table 1 and
the magnetic parameters [9] for CdMnTe in table 2. We have used the set ofγi from [11],
deduced from cyclotron resonance for different crystallographic orientations and from the
exciton centre of mass quantization in wide quantum wells; it provides also a reasonable
value of acceptor binding energy, 58 meV, close to experimental data, while the Lawaetz
parameters [10] give 87 meV. For the MP ground state, we have to choose|κ| = 3

2 in (13)
for Vmag(r). Figure 1 shows the temperature dependence of the polaron energy for QDs of
radius 2 nm, withx = 5 and 10% and a magnetization described by (14); forx = 5%, the
linear term in (14) is negligible.

Table 1. Material parameters of CdTe.N0 is the density of cation sites,ε the static dielectric
constant,γi the Luttinger parameters of the valence band according two different authors andµ

the corresponding BL parameter.

N0 = 1.47× 10−22 cm−3 ε = 10

Ref. γ1 γ2 γ3 µ

[10] 5.29 1.89 2.46 0.844
[11] 4.7 1.45 1.9 0.732

Table 2. Magnetic parameters of Cd1−xMnxTe (αl is in erg G−2 cm−3).

N0β = −0.88 eV

x (% ) xeff (%) T0 (K) αl

5 3.05 2.2 ∼0
10 3.8 2.5 0.22× 10−4

14 3.8 2.9 0.5× 10−4

We show also the results of the simplified model, i.e. the numerical solution of a single
non-linear Schr̈odinger equation:

−(h̄2/2m0mh)(d
2/dr2+ (2/r)d/dr)8h(r)+ (Vmh(r)− Eh)8h(r) = 0 (15)

where

Vmh(r) = −(β ′/2gµB)M((β ′/2gµB)|φh(r)|2) (8h(r) normalized) (16)

mh = Eloc(0)/γ1Eloc(µ) is chosen in order to obtain the correct localization energyEloc(µ)

and the effective exchange parameterβ ′ is taken asρβ where thereduction factor reads [4]

ρ =
∫ R

0
4πr2[|f (r)|2+ 1

5|g(r)|2] dr. (17)

In figure 1, a good agreement between the two calculations is obtained only forx = 5%
and T close to zero, i.e. when saturation is achieved over the whole QD. Forx = 10%,
saturation is not achieved atT = 0 due to the linear term in (14). In the high-temperature
region, considerable discrepancy is observed, the present calculation giving much higher
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Figure 1. Hole MP energy versus temperature for a Cd1−xMnxTe QD of radiusR = 2 nm for
compositionsx = 5 and 10%. The full curves give the results of the present model and the
dotted lines the results from the simplified model (15).

values for the MP energy, by a factor of the order of two. We discuss below the physical
origin of such a large discrepancy.

Let us recall that the value ofρ is obtained under the assumption of a uniform exchange
field acting on the hole [3, 4], such a situation being approached in the MP case only at
saturation. In the opposite limit, in the weak-coupling regime at high temperature, the
exchange potential acting on the hole becomes proportional toBeff (r) (7) and, thus, varies
rapidly with r. We find that the variation of the polaron energy in the linear regime
is obtained by usingβ ′ = ηβ where η is an enhancementfactor. In the first order of
perturbation (see appendix B), we obtain

η =
∫ R

0
4πr2[|f (r)|2+ 1

5|g(r)|2]2 dr

/∫ R

0
4πr2|f0(r)|4 dr (18)

f0(r) being the wavefunction forµ = 0. Indeed,η given by (18) is in good agreement
with the full numerical calculation using a small magnetic potential (see figure 2), except
for µ > 0.8, the numerical result being 10% higher forµ = 0.95. ρ andη are shown in
figure 2 as functions of the BL parameterµ (see also table 3). Whenµ increases from zero
to unity, ρ decreases from 1 to 0.6;ρ describes the variation withµ of the polaron energy
at saturation. In contrast,η increases from 1 to a maximum of 1.52 forµ = 0.72 and then
deceases towards 1.η describes the variation withµ of the polaron energy in the linear
regime. Thus, the strong enhancement of the MP energy in the present model is shown to
arise from the spatial variation of the exchange field. This is the main new and unexpected
result which explains the gross behaviour of MP energy away from saturation.η may be
considered as a form factor. Let us point out thatρ andη were computed in (17) and (18)
with the unperturbedf (r) andg(r) functions (i.e. in the absence of the MP effect). More
subtle effects arise from theT dependent modification off (r) andg(r) when the magnetic
potential is included (see figure 3).

We can conclude that hole MP energy in a zinc-blende QD is underestimated in a
significant way by the usual simplified theory. Experimental data on an MP in a QD are
expected to be related to the exciton (even if such data in CdMnTe are not yet available).
Since the contribution from the hole to the exciton MP energy is of the order of2

3, a
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Figure 2. For a QD,µ dependence of the factorsρ (full line) corresponding to the saturation
limit and η (+ from (18) and◦ from numerical calculation) representing the high-temperature
linear regime.

Table 3. The parametersρ, η andmh corresponding to theγi set of [11] for a QD and A0.

ρ η mh

QD 0.798 1.51 0.278
A0 0.804 7.79 0.432

Figure 3. Radial probability density forf andg envelopes forR = 4 nm: dotted curves, the
free hole 1S3/2 state; full curves, the MP case withx = 10% andT = 2 K.

significant increase in exciton MP energy is expected. The new treatment of the exciton
MP in a QD will be published elsewhere [12].

We can already foresee corrections to the present results due to the fact that magnetic
ions near the QD surface have fewer neighbours than those in the bulk. This could be
taken into account by using a magnetizationM function ofH and r. However, from the
shape of the hole wavefunction shown in figure 3, we can expect these corrections to be
rather small, since, near the surface, theg(r) envelope dominates, with a reduced magnetic
couplingVmag/5 in (12b).
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4. Further applications

4.1. The A0 MP

The neutral acceptor MP can be revisited with our new method. The effect on the linear
regime described by the parameterη of (18) is even more drastic, as shown in figure 4. This
is because, in this case,f (r) remains close to an exponential function, with an effective
Bohr radius shrinking to zero asµ approaches unity, approximately as (1− µ2).

Figure 4. The µ dependence of the factorsρ (full line) and η (+ from (18) and◦ from
numerical calculation) for a neutral acceptor.

The temperature dependence of the polaron energy in Cd1−xMnxTe forx = 5% is shown
in figure 5. This result is first compared with experiments [13]. As can be seen in figure 5,
the fit of the temperature dependence of the MP energy is nearly perfect. Let us stress
that this is the firstparameter freetheory. For comparison, we show also the result of the
simplified theory ((15) where the Coulomb attraction was added). We have used a reduced
value of the exchange constant,β ′ = ρβ with ρ given by (17) (see table 3). This simplified
model is equivalent to the Ram-Mohan–Wolff model [8] (however, no reduction factor was
considered in [8]). The fit of the simplified model is obviously poor, even at lowT , and
the discrepancy increases with increasingT . By comparison with the QD case (x = 5%
andR = 2 nm) of figure 1, the saturation in the acceptor case is achieved only in a fraction
of the wavefunction, near the centre. The rather different model which takes into account
magnetic fluctuations as well as discrete space distribution of Mn ions, presented in [13],
involves two fitting parameters, the value ofρ which fixes essentially the low-T value
of the MP energy and a cut-off radius which fixes the high-T behaviour. The remaining
incertitude in the present calculations based on the BL work stems from the lack of accuracy
in the Luttinger parametersγi . In fact, we have checked that the relevant parameter which
governs the high-T behaviour isµ (see in figure 5 the dashed curve, which corresponds to
µ = 0.8); this was also demonstrated by theµ dependence ofη shown in figure 4.

The same treatment is presented forx = 10% andx = 14% in figure 6. Obviously, the
fit of the MP energy is no longer good, the experimental points being about 15 meV higher
than the theory. Let us recall that in [13] and [14] the MP energy was obtained neglecting any
variation withx of the acceptor binding energyEb, in the absence of MP effect. However,
in this range of composition, the direct band gap of the material is larger by at least 10%, so
a sizeable decrease of the dielectric constant and some increase of the hole effective mass
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Figure 5. Temperature dependence of MP energy of the neutral acceptor in CdMnTe forx = 5%.◦, experimental data from [14]. The present theory is given by the full curve forµ = 0.732
and by the dashed curve forµ = 0.8; the dotted curve is the result of the simplified model
(ρ = 0.804 andmh = 0.432).

Figure 6. Temperature dependence of MP energy of the neutral acceptor forx = 10%
(experimental data from [14] (�) and present theory (dashed line)) and forx = 14%
(experimental data from [15] (◦) and present theory (full line)).

are expected and, consequently, an increase ofEb that might explain part of the discrepancy.
Let us remark also that the results of the simplified model (not shown in figure 6) are about
20% lower than theT = 5 K point computed in [8]. This is clearly because theN0J (N0β

′

in this work) value used by the authors of [8] was 0.88 eV, the free hole value. Another
contribution to the observed discrepancy might originate from the rather strong gradient
of the exchange fieldBeff (r) acting on small ion clusters, as suggested in [15], where
the degeneracy at the top of the valence band was taken into account. However, while
the contribution of nearest-neighbour pairs is rather easily evaluated, calculation of these
gradient terms forx > 10% seems very difficult.

Finally, let us discuss briefly the somewhat different behaviour of MPs in a QD and
A0 according to the present model. It can be traced back to the better uniformity of hole
spatial distribution in a QD. For that reason, we can clearly approach in a small QD the
two limiting cases: saturation, governed by theρ factor, at lowT , and the linear regime,
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ruled by theη factor, at highT . In contrast, these two limits are never clearly obtained in
neutral acceptors, due to the very non-uniform hole wavefunction.

4.2. The free hole magnetic polaron

We consider now the case of a free hole MP in zinc-blende semiconductors as an addition
to the work of [16], where a simple parabolic band was assumed. As in [16], we use
a dimensionless coupling parameterλ to express the strength of the exchange interaction
between the hole and the magnetic ions [17]. In this case, the procedure described in
appendix A is modified as follows: we fix the energyE and we have two unknowns,
ζ = f (0) andα = g(δ)/ζ . Beff (r) is computed according to (7),f (r) andg(r) beingnot
normalized. So, the magnetic potentialVmag(r) can be computed at each step. Once the
conditionsF → 0 andG → 0 are obtained [18],λ is determined from the normalization
of f (r) and g(r). Then, the free energyF is computed by integration. Let us remark
that the functionλ(E) is always single valued, but the functionE(λ) is not, in particular,
when one unstable branch of solution exists. If we fixλ first, the unstable branch is not
obtained. The energyE and free energyF (in reduced units) are displayed in figure 7 for
µ = 0.6 versus the coupling constantλ. The general aspect of these curves is not modified
qualitatively with respect to figure 1(c) of [16], but the numerical values ofλ,E andF
at specific points depend onµ. Let us discuss more precisely the comparison between the
present model and the simplified model; the results for the latter can be deduced from [16]
by an appropriate scaling. In these caculations in terms of the coupling parameterλ, we
have used an energy unitUs = (N0β/2) 5

2xeff , the polaron energy at saturation and a length
unit ds such thatUs = h̄2/2m0mhd

2
s . The expression giving the dimensionlessλ parameter

is [17] λ = 7
12β/kB(T + T0)d

3
s . In the present calculation, we useβ andmh = 1/γ1, but

in the simple model, we useβ ′ = ρβ and a value ofmh we shall discuss later. So, we can
deduce the result of the simple model (with the same reduced units as in the present model)
from figure 1(c) of [16] by the following scaling:E → ρE andλ → (γ1mh)

−3/2ρ−5/2λ.
This is shown in figure 8 forµ = 0.8. The result of the simplified model (dotted curve) is
deduced from the copy of figure 1(c) of [16] (dashed curve) through the scaling indicated by
the arrow. The valueρ = 0.77 was deduced from〈f |f 〉 and〈g|g〉 in the present calculation
for λ in the (λ∗, λ∗∗) range. Formh, we have taken arbitrarily the value for the A0 case,
i.e. γ1mh = Eb(0.8)/Eb(0) = 2.58. A comparison between the full and dotted curves in
figure 8 shows clearly that the present model predicts a larger polaron energy. Also theλ∗

value which marks the limit between metastable and unstable free MP states is reduced by
a factor of 1.5 (or the value (T ∗ +T0) corresponding toλ∗ is increased by the same factor).

4.3. Comparison with related works

The authors of [19] considered free hole MP in the two limitsµ = 0 andµ = 1. They
performed the minimization of the free energy using a one-parameter trial wavefunction of
Gaussian shape. Their results forµ = 0 can be readily compared to the exact numerical
calculations of [16], noting the relation between theirB1 parameter and theλ coupling
parameter:B3

1λ
2 = 334.6. Indeed, the behaviour ofE andF near saturation is the same,

but we can estimate the error due to the one-parameter minimization by comparing the
results for the point where the MP loses its stability (F = 0): in figure 2 of [19] this
happens forB3/5

1 = 0.43 (corresponding toλ = 151) for E = 0.44. The exact result is
λ = 124 forE = 0.2.
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Figure 7. The energyE and free energyF , in reduced units, of a free hole MP versusλ for
µ = 0.6.

Figure 8. The polaron energy of a free hole MP forµ = 0.8. The full curve is the present
result. The dashed curve is figure 1(c) of [16]. The dotted curve, obtained from the latter by an
appropriate scaling (see the text), is the result of the simplified model.

In [19] for the µ = 1 limit, a finite heavy hole massmhh was assumed (so that
mlh = 0). In this limit, replacingm0/γ1 by mhh(1− µ), the system of equations (12a, b)
becomes homogeneous because of the factor (1− µ) mutiplying the E and V terms.
By a linear combination of the two equations,g(r) is related tof (r) by the relation
(d/dr)f (r) = (d/dr + 3/r)g(r) which is the same as (14) of [19]. Withf (r) taken as
a Gaussian, the results of the minimization look reasonable: in particular, the ratio of the
MP energies at saturationEsat (µ = 0)/Esat (µ = 1) = 0.56 is close to our value ofρ
for µ = 1. However we may have some doubts about their validity, for the following
reason: we can find a solution of the homogeneous system for a spherical QD of radius
R0(f (u) = 1− (8u− 5u2)/3, g(u) = −2(u− u2)/3 with u = r/R0) but no solution going
smoothly to zero at larger could be found in free space. This suggests that there is no well
behavedµ = 1 limit for bound states such as the neutral acceptor, A0, MP or the free hole
MP in free 3D space.

The authors of [20] claim that a hole MP in zinc-blende material is anisotropic, even
when γ2 = γ3. It is not clear what they mean by anisotropy in this case. Apparently,
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they mean to emphasize that the spatial distribution of the hole moment is of axial rather
than spherical symmetry, as can be seen from our equation (6), but the MP axis in this
case has no preferential direction with respect to the crystal axis. On the other hand, when
γ2 6= γ3, a true anisotropy is expected to arise from the term of cubic symmetry in the
Luttinger Hamiltonian. Indeed, the authors of [20] conclude that, forγ3 > γ2, the optimal
MP orientation is along the body diagonal. This anisotropy is not considered in our present
treatment. The anisotropy is, however, most important in wurtzite-structure materials [21].

5. Conclusion

We have adapted for the MP problem the BL method [5] to treat bound hole states in
zinc-blende semiconductors in the spherical approximation. We have developed an efficient
numerical method to solve the two coupled BL differential equations. The study of three
different cases, namely the QD, the neutral acceptor and the free MP, shows that the present
method always gives an increase of the MP energy with respect to the usual simplified model
assuming a single parabolic band of massmh and a modified exchange parameterρβ. In
particular, there is no optimum (ρ,mh) pair to fit the temperature dependence of the MP
energy. It is also clear that a natural choice formh in a given material depends on the
problem to be solved (see table 3); this is particularly difficult in the free MP case since
there is no binding in the absence of exchange coupling. We conclude that the new method
we propose is the most reliable one for zinc-blende materials.

We have already obtained an excellentparameter freefit of the A0 MP energy versus
T in diluted systems. The strongest discrepancy between the present model and the (usual)
simplified one is expected in QDs. Experimental data in a zinc-blende QD are highly
desirable.

Appendix A

The numerical calculations are performed as follows: ther space is divided into intervals
of length δ. For a QD of radiusR, δ is typically R/100. For a 3D problem, e.g. the
neutral acceptor,δ is at least one-20th of the Bohr radiusaB and r goes torM , at least
5 aB . Through this discretization, a second-order differential equation for a functionf of
a single variabler reduces to a linear relation between the values off at three consecutive
points: r = (i − 1)δ, iδ and(i + 1)δ. In the case of the system of two coupled differential
equations (12a, b), we get a system of two linear equations between the values off and
g at three consecutive points corresponding to indicesi − 1, i, i + 1. A correct behaviour
near the origin [22] imposesf (0) = 1 andg(0) = 0; the value off (δ) can be obtained
by a development (for the acceptor, we obtainf (δ) = 1 − δ(1 − µ2) and for the hole
localization in a nanocrystalf (δ) = 1−Eδ2/6) and we setg(δ) = α, α being a parameter
we shall determine later. So, the next values off and g are obtained step by step by
solving a system of two linear equations. The goal is to choose the parametersE andα
such thatf (r) andg(r) have the correct behaviour atr = R (or r = rM ), with the additional
condition that they have no node in the range 0< r < R. One can define two quantities,
F andG which measure the distance off andg from the required behaviour atr = R (in
the case of a QD, one can takeF = f (R) andG = g(R) since we aim atf (R) = 0 and
g(R) = 0; for A0, since for larger f (r) ∼ exp(−r√E) andg(r) ∼ r exp(−r√E), we take
F = f (rM)−f (rM−δ) exp(−δ√E) andG = g(rM)−g(rM−δ)(rM−δ) exp(−δ√E)/rM).
F andG are functions ofE andα. We start from approximate valuesE0 andα0, obtained
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by trial, such that|F | and|G| are smaller than 0.1 ; then we perform the calculation for two
other points not aligned with the previous one in the (E, α) parameter space, for example
(E0 + δE, α0) and (E0, αE0 + δα). Then, from these three values ofF andG, one can
determine by a linear extrapolation the two linesLF andLG in the parameter space where
we have respectivelyF(E, α) = 0 andG(E, α) = 0 (see figure A1). The intersection
betweenLF andLG gives the next values (E1, α1) to be used in the calculation. A few
iterations using decreasing values ofδE and δα are enough to push|F | and |G| below
10−6. The pair (Ei, αi) tends towards the exact value whenEi − Ei−1 andαi − αi−1 tend
towards zero, since in this limit the linear extrapolation becomes exact.

Figure A1. A sketch of the procedure described in appendix A to obtain the next (E1, α1) pair
from the pair (E0, α0).

This procedure can be used if the potential is known from the beginning. For the MP
case, we first solve (12a, b) with Vmag(r) = 0. Using thef (r) andg(r) thus obtained, we
computeBeff (r) in (7) and thenVmag(r) from (13) for the largestT value of interest. Then
we solve again (12a, b) includingVmag(r), thus obtaining a new pair of functionsf (r) and
g(r). Two or three iterations are sufficient to obtain good convergence. Computation is
then carried out for decreasing values ofT down to zero.

Appendix B

We examine now the behaviour of the system of equations(12a, b) for V (r) = 0 submitted
to a perturbationεU(r), ε being the small parameter.

Assuming f (r) = f0(r) + εf1(r) + · · · , g(r) = g0(r) + εg1(r) + · · · and E =
E0 + εE1 + · · · we obtain after substitution in (12a, b) from the ε terms (we take here
h̄2γ1/2m0 = 1)

[d2/dr2+ (2/r) d/dr + E0]f1(r)− µ[d2/dr2+ (5/r) d/dr + 3/r2]g1(r)

= [U(r)− E1]f0(r) (B1)

[d2/dr2+ (2/r) d/dr − 6/r2+ E0]g1(r)− µ[d2/dr2− (1/r) d/dr]f1(r)

= [U(r)− E1]g0(r). (B2)

Let us remark that we cannot havef1(r) = 0 andg1(r) = 0 since we would obtain
two values forE1, 〈f0|U |f0〉/〈f0|f0〉 and〈g0|U |g0〉/〈g0|g0〉 which are obviously not equal,
except for a uniformU(r).
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After multiplication on the left of (B1) byf0(r) and performing space integration, we
obtain

〈f0|U(r)− E1|f0〉 = 〈f1|d2/dr2+ (2/r) d/dr + E0|f0〉
−µ〈g1| d2/dr2+ (5/r) d/dr + (3/r2)|f0〉. (B3)

(B3) can be transformed, using (12a):

〈f0|U(r)− E1|f0〉 = µ[〈f1|d2/dr2+ (5/r) d/dr + (3/r2)|g0〉
−〈g1|d2/dr2+ (5/r) d/dr + (3/r2)|f0〉]. (B4)

In the same way, we obtain from (B2)

〈g0|U(r)− E1|g0〉 = µ[〈g1|d2/dr2− (1/r)(d/dr)|f0〉 − 〈f1| d2/dr2− (1/r)(d/dr)|g0〉].
(B5)

Summing (B4) and (B5), withf0 andg0 obeying (4), we obtain

E1 = 〈f0|U(r)|f0〉 + 〈g0|U(r)|g0〉
−3µ[〈f1|(2/r) d/dr + (1/r2)|g0〉 − 〈g1|(2/r) d/dr + (1/r2)|f0〉]. (B6)

We assume that the second term in (B6) is small, some cancellation arising between the
two cross terms, so we shall use

E1 = 〈f0|U(r)|f0〉 + 〈g0|U(r)|g0〉. (B7)

The validity of (B7) was checked in the case of a square well potential of radiusR/5.
We have found that the numerical result exceeds the prediction of (B7) only forµ > 0.8,
the discrepancy being about 1.5% forµ = 0.95.

In the case of a small magnetic potential in the linear regime, we can writeU(r) =
|f0(r)|2 + 1

5|g0(r)|2 in (B1) and putU(r)/5 in (B2). Then, following the same derivation,
we obtain (after dropping the index 0)

E1 = 〈f |(|f |2+ 1
5|g|2)|f 〉 + 1

5〈g|(|f |2+ 1
5|g|2)|g〉. (B8)

Since forµ = 0 we obtainE0 = 〈f0|f 2
0 |f0〉 where the index refers now toµ = 0, we

obtain the expression of the enhancement factorη = E1/E0 in (18).
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