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Abstract. A theory of hole magnetic polarons in diluted magnetic semiconductors of zinc-
blende structure is presented, following the method introduced by Baldereschi and Lipari to
solve the neutral acceptor problem. An expression for the nonlinear magnetic potential is
determined in the mean-field approximation. An efficient numerical method is used to solve the
system of two coupled differential equations. Results are presented for quantum dots, neutral
acceptors and free magnetic polarons. The present theory predicts a substantial increase of
the magnetic polaron energy in all cases. An excellent parameter-free fit of acceptor magnetic
polaron energy versus temperature is obtained for diluted systems. Simplified models based on
a single parabolic band with two adjustable parameters, the hole mass and the exchange integral,
are shown to be inadequate, in particular in the case of quantum dots.

1. Introduction

In semimagnetic or diluted magnetic semiconductors (DMSs), one topic which has been
well studied, both experimentally and theoretically, is the magnetic polaron (MP) [1], which
arises from strong sp—d exchange interaction between a band carrier and the magnetic ions.
Strong MPs are related mainly to holes (neutral acceptors or localized excitons), since
p—d exchange is usually about four times stronger than s—d exchange, at least in II-VI
compounds. In zinc-blende material, the degeneracy at the top of the valence band of
I's symmetry makes the theory more complicated. This is why, in MP models, holes are
usually treated as simple parabolic-band particles vgitbffective spin, characterized by

two parametersy,, the effective mass anfl’ = pB, the exchange parameter [2], whete

is the exchange constant for a free hole. The fapt@maller than unity, arising from hole
localization, was first calculated for a uniform exchange field in an acceptor [3] and in a
guantum dot (QD) [4].

In this paper, we present a more precise treatment for zinc-blende semiconductors,
based on the spherical model introduced by Baldereschi and Lipari (BL) [5] to solve the
shallow-acceptor problem. In section 2, we derive an expression for the magnetic potential
in the mean-field approximation. The procedure of numerical solution for the two BL
coupled differential equations is described in appendix A. Results for a hole MP in a QD
are presented in section 3. We show that standard calculations give the same result only
at saturation. Away from saturation, the present theory gives a sizeable increase in MP
energy, by a factor that can be of the order of two. We show in appendix B how a new
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factorn > 1 has to be substituted ferin the high-temperature linear regime. In section 4,
results for a neutral acceptor MP are given. Extension to a free MP is also outlined.

2. Theory

In the spherical approximation for the Luttinger Hamiltonian, the hole wavefunctions are
W, (r) = Z Fue(r)uy (r) @)

wherex andv run through3, 1, —1 and—3. u,(r) are the time reversed valence band

Bloch functions af". Note that following BL and Efros [6], we have included the fourfold
I's valence band only in (1). Recently, Richatal [7] have reported that the contribution
from the spin—orbit split-off band’; might be of crucial importance for the QD hole level
ordering. Here, we consider the fourfold ground statgl®at corresponds to

Fue(r) = 8y Ro(r)Yoo + <ga v; 2, (k — V)|§, K)Ro(r) Y2, (8, @) (2)

where Clebsch—Gordan coefficients have been used. Let us rewrite the radial functions
Ro(r) and Rx(r) as

fr) = (4m) " Y2Ro(r) g(r) = (4m)"Y2Ry(r) (3)
which satisfy the normalization condition
fo drr?[| f(N)* + 1g(r) 7] dr = 1. 4

As pointed out by BL, the above functional form (2) remains valid in any potential of
spherical symmetry. Unperturbed QD functiofi&-) and g(r) can be written in terms of
spherical Bessel functions [6].

Now, the expectation value of the exchange interaction between the hole and the Mn d
electrons (total ionic spirS = §) is given by [4]

(Hexehe = =% Z Fi (R)(Mj - Sil§) Fee (R)) )
[
wherei labels the Mn ion sites angl is the p—d exchange constant. The effective exchange
field acting on an Mn spin at is thus

Beys(r) = —Z (1) (L] G1€) Fe (7). (6)

Note that this exchange fleld contains an angular dependence even if we neglect its
transverse components. In order to restitute the spherical symmetry of our problem, we
average over the orientatianin (6), so that the effective field along the mean-field axis
reads

Bus () = (1 ()2 + sleP). @)
S4B
The magnetic free energy can be written as
Beyr (1)
Gmag = —/ dr/ M(B)dB (8)
0

where M (B) is the magnetization of the Mn spin system (assumed to be continuous). The
total free energy of the hole and the magnetization cloud is

G = Gmag + Th + Vext~ (9)
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T, and V,,, are respectively the expectation values of the hole kinetic energy and of the
non-magnetic potential energy(r) (like the Coulomb potential in the acceptor case).
According to BL for a 13, state

o £ @ 2d & 5d 3
h—_%)/l[/ r f (")H:m+;ai|f(”)—l/«[m+;a+r—2]g(")}
¢ 1d > 2d 6
+/drg*(r){—u[ }f(r)+[@+—— }g(r)”- (10)

2 rdr ra 2
Here,mg is the free electron mass andthe BL parameter defined as
w = (4y2 + 6y3)/(Sy1)

in terms of the Luttinger parameteps V.., is sSimply (f (M) |V @I f ) +{g@) |V @)|g)).
The usual variational recipe for minimization reads

(9/0f*)(G —EN) =0 (9/08")(G — EN) =0 (11)

whereN andE represent the norm and the Lagrange multiplier respectively. We thus arrive
at a system of two coupled Sdéinger equations:

Py 2d ? 5d 3
‘%Hmﬂa}f(”—“{m*;a*rz}g(”]
+{Vmug +V(@)—E}f(r)=0 (1b)

h? > 2d 6 > 1d
—ﬂH - }g(r)—u{ - }f(r)]

2o @2 T ra 72 @ ra

+{%Vmag+v(r)_E}g(r):o (123)
where

Vinag(r) = — (B /3gip) M (Besyr (1)) (13)

with B.s¢ from (7). For the local magnetization functional, we can use, following [8], the
experimental high-field magnetization curve [9]:

M(H) = gupNoxers(3)Bs2(5g s H/2k(T + To)) + o H. (14)

Ny is the density of cation sites, s the concentration of ‘free’ magnetic iorig a parameter
taking into account the mean long-range antiferromagnetic interaction between ioBgand
the Brillouin function for sping. The linear termy; H, whereq; is an empirical parameter,
partly represents cluster contributions that cannot be described by the modified Brillouin
function. This term is important for small QD where the effective figld, in (7) may
reach several tens of tesla.

Let us note that (12 and (12) are just the generalization for the MP case of{RGf
BL. In [5], the system of differential equations @,2b) was solved variationallyf () and
g(r) being developed as a sum of Gaussian functions. Here, we introduce a new method
of numerical solution of the system @2b), which is explained in appendix A. We have
checked the accuracy of this method in two ways: (i) we obtained for the acceptor case
results in very good agreement with those of BL; (ii) in the case of the localization energy
of a hole in a spherical QD with infinite barrier, an analytical solution exists {61, and
g(r) being combinations of spherical Bessel functions; here again, our numerical solution
is excellent.
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3. A hole MP in a QD

Calculations are performed for a semimagnetiG C¥in, Te QD of radiusk. We consider

a hole MP in order to exhibit more clearly the difference with the simplified model assuming
a simple parabolic hole band. The CdTe material parameters used are listed in table 1 and
the magnetic parameters [9] for CdMnTe in table 2. We have used the gefroim [11],
deduced from cyclotron resonance for different crystallographic orientations and from the
exciton centre of mass quantization in wide quantum wells; it provides also a reasonable
value of acceptor binding energy, 58 meV, close to experimental data, while the Lawaetz
parameters [10] give 87 meV. For the MP ground state, we have to cmopseg in (13)

for Vi, (r). Figure 1 shows the temperature dependence of the polaron energy for QDs of
radius 2 nm, withx = 5 and 10% and a magnetization described by (14);xfer 5%, the

linear term in (14) is negligible.

Table 1. Material parameters of CdTeaVy is the density of cation siteg, the static dielectric
constant,; the Luttinger parameters of the valence band according two different authoys and
the corresponding BL parameter.

No=147x 102 cm™3 e =10

Ref. »n V2 V3 M
[10] 529 1.89 246 0.844
[11] 47 145 1.9 0732

Table 2. Magnetic parameters of @d,Mn,Te (; is in erg G2 cm™3).
Nof — —0.88 eV
x (%) xer (%) To(K)  «

5 3.05 22 ~0
10 3.8 2.5 ®@2x 104
14 3.8 2.9 %G x 104

We show also the results of the simplified model, i.e. the numerical solution of a single
non-linear Schivdinger equation:

— (2 /2momy,) (0% /dr? 4 (2/r)d/dr) @, (r) + (Voun (r) — Ep)®,(r) =0 (15)
where
Vo (r) = —(B' /28 ) M((B' /28 118) 161 ()]?) (@5, (r) normalized (16)

my, = E;,.(0)/y1E;,.(u) is chosen in order to obtain the correct localization endfgy(ut)
and the effective exchange paramegéis taken asp8 where thereductionfactor reads [4]

R
p= fo A r?[| f (1) + E1g(r)|?] dr. (17)

In figure 1, a good agreement between the two calculations is obtained only=f&%
and T close to zero, i.e. when saturation is achieved over the whole QDx For10%,
saturation is not achieved @ = 0 due to the linear term in (14). In the high-temperature
region, considerable discrepancy is observed, the present calculation giving much higher
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Figure 1. Hole MP energy versus temperature for g Cavin, Te QD of radiuskR = 2 nm for
compositionsx = 5 and 10%. The full curves give the results of the present model and the
dotted lines the results from the simplified model (15).

values for the MP energy, by a factor of the order of two. We discuss below the physical
origin of such a large discrepancy.

Let us recall that the value gf is obtained under the assumption of a uniform exchange
field acting on the hole [3, 4], such a situation being approached in the MP case only at
saturation. In the opposite limit, in the weak-coupling regime at high temperature, the
exchange potential acting on the hole becomes proportion8lar) (7) and, thus, varies
rapidly with r. We find that the variation of the polaron energy in the linear regime
is obtained by usingg’ = 5B wheren is an enhancemenfactor. In the first order of
perturbation (see appendix B), we obtain

R R
n= f Arr?[| f(r)? + %|g(r)|2]2dr// 47 r?| fo(r)|* dr (18)
0 0

fo(r) being the wavefunction for = 0. Indeed,n given by (18) is in good agreement
with the full numerical calculation using a small magnetic potential (see figure 2), except
for © > 0.8, the numerical result being 10% higher for= 0.95. p andn are shown in
figure 2 as functions of the BL paramejern(see also table 3). Whemn increases from zero

to unity, o decreases from 1 to 0.6; describes the variation with of the polaron energy

at saturation. In contrast, increases from 1 to a maximum of 1.52 fer= 0.72 and then
deceases towards I; describes the variation witp of the polaron energy in the linear
regime. Thus, the strong enhancement of the MP energy in the present model is shown to
arise from the spatial variation of the exchange field. This is the main new and unexpected
result which explains the gross behaviour of MP energy away from saturafiomay be
considered as a form factor. Let us point out thaandn were computed in (17) and (18)

with the unperturbed’ (r) and g(r) functions (i.e. in the absence of the MP effect). More
subtle effects arise from thE dependent modification of () andg(r) when the magnetic
potential is included (see figure 3).

We can conclude that hole MP energy in a zinc-blende QD is underestimated in a
significant way by the usual simplified theory. Experimental data on an MP in a QD are
expected to be related to the exciton (even if such data in CdMnTe are not yet available).
Since the contribution from the hole to the exciton MP energy is of the ord%, af
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Figure 2. For a QD,« dependence of the factogs (full line) corresponding to the saturation
limit and  (+ from (18) andO from numerical calculation) representing the high-temperature

linear regime.

Table 3. The parameterg, n andm;, corresponding to the; set of [11] for a QD and A

P n mp

0.798
0.804

151
7.79

QD
AO

0.278
0.432

0.6 it
0.5

0.4

4nr2 W2(r) (nm'")

0.3 |
0.2 |

0.1

E f2 )

Cdo'gMane

0.0 N

Figure 3. Radial probability density forf and g envelopes forR = 4 nm: dotted curves, the
free hole 19/, state; full curves, the MP case with= 10% andT = 2 K.

significant increase in exciton MP energy is expected. The new treatment of the exciton

MP in a QD will be published elsewhere [12].

We can already foresee corrections to the present results due to the fact that magnetic
ions near the QD surface have fewer neighbours than those in the bulk. This could be

taken into account by using a magnetizatighfunction of H andr. However, from the

shape of the hole wavefunction shown in figure 3, we can expect these corrections to be

rather small, since, near the surface, #tie) envelope dominates, with a reduced magnetic

coupling Viu. /5 in (12b).
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4. Further applications

4.1. The AMP

The neutral acceptor MP can be revisited with our new method. The effect on the linear
regime described by the parametenf (18) is even more drastic, as shown in figure 4. This

is because, in this cas¢,(r) remains close to an exponential function, with an effective
Bohr radius shrinking to zero as approaches unity, approximately as<{1.?).

20 e 1
-1 0.95
5 4 0.9
X -1 0.85
10 |
A -1 0.8
5 -1 0.75
i o 4 0.7
L+ 0+ O + Ot o~
0 T e 0.65
0 0.2 0.4 0.6 0.8 pn 1

Figure 4. The u dependence of the factogs (full line) and n (+ from (18) andO from
numerical calculation) for a neutral acceptor.

The temperature dependence of the polaron energy in Gth, Te for x = 5% is shown
in figure 5. This result is first compared with experiments [13]. As can be seen in figure 5,
the fit of the temperature dependence of the MP energy is nearly perfect. Let us stress
that this is the firsparameter freetheory. For comparison, we show also the result of the
simplified theory ((15) where the Coulomb attraction was added). We have used a reduced
value of the exchange constagit,= pB with p given by (17) (see table 3). This simplified
model is equivalent to the Ram-Mohan-Wolff model [8] (however, no reduction factor was
considered in [8]). The fit of the simplified model is obviously poor, even at Tgwand
the discrepancy increases with increasihg By comparison with the QD case & 5%
and R = 2 nm) of figure 1, the saturation in the acceptor case is achieved only in a fraction
of the wavefunction, near the centre. The rather different model which takes into account
magnetic fluctuations as well as discrete space distribution of Mn ions, presented in [13],
involves two fitting parameters, the value pfwhich fixes essentially the low- value
of the MP energy and a cut-off radius which fixes the higlbehaviour. The remaining
incertitude in the present calculations based on the BL work stems from the lack of accuracy
in the Luttinger parameterg. In fact, we have checked that the relevant parameter which
governs the highF behaviour isu (see in figure 5 the dashed curve, which corresponds to
w = 0.8); this was also demonstrated by thedependence of shown in figure 4.

The same treatment is presented for 10% andx = 14% in figure 6. Obviously, the
fit of the MP energy is no longer good, the experimental points being about 15 meV higher
than the theory. Let us recall that in [13] and [14] the MP energy was obtained neglecting any
variation withx of the acceptor binding energy;, in the absence of MP effect. However,
in this range of composition, the direct band gap of the material is larger by at least 10%, so
a sizeable decrease of the dielectric constant and some increase of the hole effective mass
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Figure 5. Temperature dependence of MP energy of the neutral acceptor in CdMnie=fég%o.

O, experimental data from [14]. The present theory is given by the full curve.fer 0.732
and by the dashed curve fer = 0.8; the dotted curve is the result of the simplified model
(p = 0.804 andm;, = 0.432).

50 -. — F EEETERT SRR ST VS W " PR
E(meV)[ o CdMnTe |
a0 [ og e A°MP ]
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I e e o N
0 10 20 30 40T(K)50

Figure 6. Temperature dependence of MP energy of the neutral acceptor fer 10%
(experimental data from [14]({) and present theory (dashed line)) and for= 14%
(experimental data from [15]F) and present theory (full line)).

are expected and, consequently, an increadg, ¢fiat might explain part of the discrepancy.
Let us remark also that the results of the simplified model (not shown in figure 6) are about
20% lower than thg = 5 K point computed in [8]. This is clearly because thig/ (NoS’
in this work) value used by the authors of [8] was 0.88 eV, the free hole value. Another
contribution to the observed discrepancy might originate from the rather strong gradient
of the exchange fieldB.ss(r) acting on small ion clusters, as suggested in [15], where
the degeneracy at the top of the valence band was taken into account. However, while
the contribution of nearest-neighbour pairs is rather easily evaluated, calculation of these
gradient terms fox > 10% seems very difficult.

Finally, let us discuss briefly the somewhat different behaviour of MPs in a QD and
A° according to the present model. It can be traced back to the better uniformity of hole
spatial distribution in a QD. For that reason, we can clearly approach in a small QD the
two limiting cases: saturation, governed by thdactor, at low7, and the linear regime,
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ruled by then factor, at highT'. In contrast, these two limits are never clearly obtained in
neutral acceptors, due to the very non-uniform hole wavefunction.

4.2. The free hole magnetic polaron

We consider now the case of a free hole MP in zinc-blende semiconductors as an addition
to the work of [16], where a simple parabolic band was assumed. As in [16], we use
a dimensionless coupling parameleto express the strength of the exchange interaction
between the hole and the magnetic ions [17]. In this case, the procedure described in
appendix A is modified as follows: we fix the enerdgy and we have two unknowns,

¢ = f(0) anda = g(8)/¢. B.ss(r) is computed according to (7),(r) andg(r) beingnot
normalized So, the magnetic potentid,.,(r) can be computed at each step. Once the
conditionsF — 0 andG — 0 are obtained [18] is determined from the normalization

of f(r) and g(r). Then, the free energy’ is computed by integration. Let us remark
that the functioni(E) is always single valued, but the functidf(}) is not, in particular,

when one unstable branch of solution exists. If weXifirst, the unstable branch is not
obtained. The energ¥ and free energy (in reduced units) are displayed in figure 7 for

n = 0.6 versus the coupling constakit The general aspect of these curves is not modified
qualitatively with respect to figure 1(c) of [16], but the numerical values.of and F

at specific points depend qn Let us discuss more precisely the comparison between the
present model and the simplified model; the results for the latter can be deduced from [16]
by an appropriate scaling. In these caculations in terms of the coupling parameter

have used an energy uriit, = (Noﬁ/Z)gxeff, the polaron energy at saturation and a length
unit d; such thatU; = _2/2m0mhds2. The expression giving the dimensionlésparameter

is [17] A = %zﬁ/kB(T + To)d3. In the present calculation, we ugeandm;, = 1/y1, but

in the simple model, we usg = pg and a value ofn;, we shall discuss later. So, we can
deduce the result of the simple model (with the same reduced units as in the present model)
from figure 1(c) of [16] by the following scalingE — pE andx — (yim;,)~3?p=52x.

This is shown in figure 8 fop = 0.8. The result of the simplified model (dotted curve) is
deduced from the copy of figure 1(c) of [16] (dashed curve) through the scaling indicated by
the arrow. The valup = 0.77 was deduced frortf| f) and{g|g) in the present calculation

for A in the (*, A**) range. Form,, we have taken arbitrarily the value for thé Aase,

i.e. yym;, = E,(0.8)/E,(0) = 2.58. A comparison between the full and dotted curves in
figure 8 shows clearly that the present model predicts a larger polaron energy. Also the
value which marks the limit between metastable and unstable free MP states is reduced by
a factor of 1.5 (or the valuel(* + 7p) corresponding ta.* is increased by the same factor).

4.3. Comparison with related works

The authors of [19] considered free hole MP in the two limits= 0 andu = 1. They
performed the minimization of the free energy using a one-parameter trial wavefunction of
Gaussian shape. Their results for= 0 can be readily compared to the exact numerical
calculations of [16], noting the relation between th&iy parameter and thé coupling
parameter:B312 = 334.6. Indeed, the behaviour @f and F near saturation is the same,

but we can estimate the error due to the one-parameter minimization by comparing the
results for the point where the MP loses its stabilify £ 0): in figure 2 of [19] this
happens forBf/5 = 0.43 (corresponding ta. = 151) for E = 0.44. The exact result is

A =124 for E = 0.2.
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Figure 7. The energyE and free energy, in reduced units, of a free hole MP versugor
n = 0.6.

0.2 |-

0.1 |

0.0

Figure 8. The polaron energy of a free hole MP far= 0.8. The full curve is the present
result. The dashed curve is figure 1(c) of [16]. The dotted curve, obtained from the latter by an
appropriate scaling (see the text), is the result of the simplified model.

In [19] for the © = 1 limit, a finite heavy hole mass:,, was assumed (so that
my, = 0). In this limit, replacingmo/y1 by m;, (1 — ), the system of equations (d2b)
becomes homogeneous because of the factor (1) mutiplying the E and V terms.

By a linear combination of the two equationg(r) is related to f(r) by the relation
(d/dr) f(r) = (d/dr + 3/r)g(r) which is the same as (14) of [19]. Witli(r) taken as

a Gaussian, the results of the minimization look reasonable: in particular, the ratio of the
MP energies at saturatiof,,;(u = 0)/Es,(u = 1) = 0.56 is close to our value op

for o = 1. However we may have some doubts about their validity, for the following
reason: we can find a solution of the homogeneous system for a spherical QD of radius
Ro(f(u) =1— (8u —5u®)/3, g(u) = —2(u — u?)/3 with u = r/Rp) but no solution going
smoothly to zero at large could be found in free space. This suggests that there is no well
behavedu = 1 limit for bound states such as the neutral accept8r,MP or the free hole

MP in free 3D space.

The authors of [20] claim that a hole MP in zinc-blende material is anisotropic, even
wheny, = y3. It is not clear what they mean by anisotropy in this case. Apparently,
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they mean to emphasize that the spatial distribution of the hole moment is of axial rather
than spherical symmetry, as can be seen from our equation (6), but the MP axis in this
case has no preferential direction with respect to the crystal axis. On the other hand, when
yo # y3, a true anisotropy is expected to arise from the term of cubic symmetry in the
Luttinger Hamiltonian. Indeed, the authors of [20] conclude that ot y», the optimal

MP orientation is along the body diagonal. This anisotropy is not considered in our present
treatment. The anisotropy is, however, most important in wurtzite-structure materials [21].

5. Conclusion

We have adapted for the MP problem the BL method [5] to treat bound hole states in
zinc-blende semiconductors in the spherical approximation. We have developed an efficient
numerical method to solve the two coupled BL differential equations. The study of three
different cases, namely the QD, the neutral acceptor and the free MP, shows that the present
method always gives an increase of the MP energy with respect to the usual simplified model
assuming a single parabolic band of magsand a modified exchange paramepg. In
particular, there is no optimumnmp(m,) pair to fit the temperature dependence of the MP
energy. It is also clear that a natural choice fof in a given material depends on the
problem to be solved (see table 3); this is particularly difficult in the free MP case since
there is no binding in the absence of exchange coupling. We conclude that the new method
we propose is the most reliable one for zinc-blende materials.

We have already obtained an excell@arameter freefit of the A° MP energy versus
T in diluted systems. The strongest discrepancy between the present model and the (usual)
simplified one is expected in QDs. Experimental data in a zinc-blende QD are highly
desirable.

Appendix A

The numerical calculations are performed as follows: thepace is divided into intervals
of length §. For a QD of radiusR, § is typically R/100. For a 3D problem, e.g. the
neutral acceptor§ is at least one-20th of the Bohr radiug and r goes tory,, at least
5 ap. Through this discretization, a second-order differential equation for a fungtiof

a single variable- reduces to a linear relation between the valueg @ft three consecutive
points: r = (i — 1)8, i6 and (i + 1)é. In the case of the system of two coupled differential
equations (12, b), we get a system of two linear equations between the values arid

g at three consecutive points corresponding to indicesl, i,i + 1. A correct behaviour
near the origin [22] imposeg (0) = 1 andg(0) = 0; the value off(§) can be obtained
by a development (for the acceptor, we obtgits) = 1 — §(1 — u?) and for the hole
localization in a nanocrystaf (§) = 1 — E82/6) and we seg(8) = a, o being a parameter
we shall determine later. So, the next valuesfofand ¢ are obtained step by step by
solving a system of two linear equations. The goal is to choose the paranietard o
such thatf (r) andg(r) have the correct behaviourat= R (or r = ry), with the additional
condition that they have no node in the range:@ < R. One can define two quantities,
F and G which measure the distance gfand g from the required behaviour at= R (in
the case of a QD, one can take= f(R) andG = g(R) since we aim atf(R) = 0 and
g(R) = 0; for A%, since for large f(r) ~ exp(—r/E) andg(r) ~ r exp(—r./E), we take
F = f(ry)— f(ry—98) exp(—8/E) andG = g(ry) — g(ry —8)(ryy — 8) eXp(—=8/E) /).

F and G are functions off anda. We start from approximate valué% andwg, obtained
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by trial, such thatF| and|G| are smaller than 0.1 ; then we perform the calculation for two
other points not aligned with the previous one in tli ¢) parameter space, for example
(Eo + 8E, ag) and (Ep, @ Eg + Sa). Then, from these three values #f and G, one can
determine by a linear extrapolation the two lines and L in the parameter space where
we have respectively(E, o) = 0 andG(E,«) = 0 (see figure Al). The intersection
betweenLr and L gives the next valuesH;, «1) to be used in the calculation. A few
iterations using decreasing values & and o are enough to pushF| and |G| below
1075, The pair E;, ;) tends towards the exact value whepn— E;_, anda; — o;_1 tend
towards zero, since in this limit the linear extrapolation becomes exact.

E E + 0E

Figure Al. A sketch of the procedure described in appendix A to obtain the r&xta;) pair
from the pair Eo, «o).

This procedure can be used if the potential is known from the beginning. For the MP
case, we first solve (12 b) with V., (r) = 0. Using thef (r) andg(r) thus obtained, we
computeB.s¢(r) in (7) and thenV,,,, () from (13) for the largesT” value of interest. Then
we solve again (12 b) including V,,.,(r), thus obtaining a new pair of function&r) and
g(r). Two or three iterations are sufficient to obtain good convergence. Computation is
then carried out for decreasing values7otdown to zero.

Appendix B

We examine now the behaviour of the system of equati@@s, ») for V (r) = 0 submitted
to a perturbatiorzU (r), ¢ being the small parameter.

Assuming f(r) = fo(r) + efa(r) + ---,8(r) = go(r) + eg1(r) + --- and £ =
Eo + ¢E1 + --- we obtain after substitution in (&2 ») from the ¢ terms (we take here
R?y1/2mo = 1)

[02/dr? 4 (2/r) d/dr + Eo) f1(r) — pu[d?/dr? + (5/r) d/dr + 3/r?]g1(r)

=[U(r) — E1l fo(r) (B1)
[02/dr? + (2/r) d/dr — 6/r? 4+ Eolgi(r) — n[d?/dr? — (1/r) d/dr] f1(r)
=[U(r) — E1]go(r). (B2)

Let us remark that we cannot hayg(r) = 0 andgi(r) = O since we would obtain
two values forE1, (folU| fo)/{fol fo) and{golU|go)/{golgo) Which are obviously not equal,
except for a unifornl (r).
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After multiplication on the left of (B1) byfs(r) and performing space integration, we
obtain

(folU(r) — E1l fo) = ( fald?/dr? + (2/r) d/dr + Eol fo)
—ulga| d?/dr? + (5/r) d/dr + (3/r?)| fo). (B3)

(B3) can be transformed, using ()2

(folU(r) — E1l fo) = pl(fuld?/dr? + (5/r) d/dr + (3/r?)|go)
—(g1|d?/dr? + (5/r) d/dr + (3/r%)| fo)]. (B4)
In the same way, we obtain from (B2)

(g0lU(r) — E1lgo) = ul(gald?/dr? — (1/r)(d/dr)| fo) — (ful & /dr? — (1/r)(d/dr)]g0)]-
(BS)

Summing (B4) and (B5), withf, and go obeying (4), we obtain

Eq1 = (folU(r)| fo) + (golU(r)|go)
=3ul(f1l(2/r)d/dr + (1/r?)|g0) — (g1l(2/r) d/dr + (1/7?)| fo)]. (B6)

We assume that the second term in (B6) is small, some cancellation arising between the
two cross terms, so we shall use

E1 = (folU(r)] fo) + (golU (r)[go). (B7)

The validity of (B7) was checked in the case of a square well potential of rat}ibGs
We have found that the numerical result exceeds the prediction of (B7) onjy for0.8,
the discrepancy being about 1.5% for= 0.95.

In the case of a small magnetic potential in the linear regime, we can W(itg =
| fo(r))? + %|go(r)|2 in (B1) and putU(r)/5 in (B2). Then, following the same derivation,
we obtain (after dropping the index 0)

Ev= (fIAfP+ 21gP1f) + 2l f 12+ ElgP)lg). (B8)

Since foru = 0 we obtainEg = (f0|f02|fo) where the index refers now ta = 0, we
obtain the expression of the enhancement fagter E1/Eo in (18).
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